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Abstract

In populations exposed to heavy metals, there are few biomarkers that capture intermediate 

exposure windows. We sought to determine the correlation between toenail metal concentrations 

and prior 12 month work activity in welders with variable, metal-rich, welding fume exposures. 

Forty-eight participants, recruited through a local union, provided 69 sets of toenail clippings. 

Union-supplied and worker verified personal work histories were used to quantify hours welded 

and respirator use. Toenail samples were digested and analyzed for lead (Pb), manganese (Mn), 

cadmium (Cd), nickel (Ni) and arsenic (As) using ICP-MS. Spearman correlation coefficients 

were used to examine the correlation between toenail metal concentrations. Using mixed models 

to account for multiple participation times, we divided hours welded into three-month intervals 

and examined how weld hours correlated with log-transformed toenail Pb, Mn, Cd, Ni and As 

concentrations. Highest concentrations were found for Ni, followed by Mn, Pb and As, and Cd. 

All of the metals were significantly correlated with one another (rho range=0.28–0.51), with the 

exception of Ni and As (rho=0.20, p=0.17). Using mixed models adjusted for age, respirator use, 

smoking status and BMI, we found that Mn was associated with weld hours 7–9 months prior to 

clipping (p = 0.003), Pb was associated with weld hours 10–12 months prior to clipping (p=0.03) 

and over the entire year (p=0.04). Cd was associated with weld hours 10–12 months prior to 

clipping (p=0.05), and also with the previous year’s total hours welded (p=0.02). The association 

between Ni and weld hours 7–9 months prior to clipping approached significance (p=0.06). 

Toenail metal concentrations were not associated with the long-term exposure metric, years as a 

welder. Results suggest Mn, Pb, and Cd may have particular windows of relevant exposure that 

reflect work activity. In a population with variable exposure, toenails may serve as useful 
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biomarkers for occupational metal fume exposures to Mn, Pb and Cd during distinct periods over 

the year prior to sample collection.
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INTRODUCTION

Welders are exposed to heavy metals including lead (Pb), manganese (Mn), cadmium (Cd), 

nickel (Ni) and arsenic (As) when molten metal from steel, electrodes or wires is volatized. 

Small spherical particles (50–300 nm in diameter) contained in volatilized welding fume can 

reach deep into the alveolar region of the lung and initiate health effects. (1) Additionally, 

toxicological studies suggest that these small particles may bypass the blood brain barrier by 

traveling through the olfactory nerves to brain areas, initiating a cascade of central nervous 

system effects. (2) Intermediate and long term weld fume exposures have been shown to 

have cardiovascular, (3, 4) pulmonary (5, 6) and neurological effects, (7–9) underscoring the 

need for biomarkers of long-term exposure that can be used in risk assessment.

The choice of an appropriate biomarker is, in part, a reflection of the relationship between 

exposure and biomarker and the exposure-time period that the biomarker reflects. For 

example, a metal’s half-life may be relevant when exposures are intermittent, but should 

exposure be constant, a steady state may be reached. In a study that examined the utility of 

blood Mn measurements in welders working on the California Bay Bridge, the authors 

found that blood Mn was associated with total air Mn in low and moderately exposed 

workers with constant exposure, but not for those exposed to the highest Mn levels.(10) 

Blood Pb has a half-life in blood of approximately 30 days, (11, 12) and making it a poor 

biomarker for intermediate exposure. For Cd the half-life is 12 years in urine (13) and 7–16 

years in blood, (14, 15) indicating that it better represents longer rather than intermediate 

exposures. Choosing an appropriate biomarker requires careful consideration of multiple 

factors related to both the biomarker as well as the exposure.

Toenail clippings collected from all ten toes are likely to reflect exposure integrated over the 

previous 6–12 months, (16) due to a growth rate of approximately 1.6 mm/month (17) and an 

average great toenail length of 20mm. (18) Given that nails are noninvasively and painlessly 

collected, and easy to store and transport, nail metal concentration should be evaluated as a 

potential biomarker of internal dose for both occupational and environmental exposures. 

However, questions remain about what exposure window is captured by toenail samples, 

what exposures it may reflect, the ability to discriminate between the toxicants found in 

toenails and what external exposure measures are best for comparing to toenail metals.

Toenails have been evaluated as biomarkers in a variety of research settings, including 

environmental (19–21) and occupational (22–26) exposures, posthumously, (27, 28) and in 

children. (29–31) Such studies have measured toenail metal concentrations of 

methylmercury, (32, 33) Pb, (34, 35) Cd, (36, 37) As, (38–40) Mn, (24, 41) Ni (20) and more. Mn 

and Ni have been isolated in toenail samples from welders. (22, 24) Cd and Pb were found in 
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nail tissue samples in deceased copper smelter workers. (28) In Mortada et al., (42) Pb was 

measured in toenail samples taken from police officers exposed to traffic pollution, which 

were significantly associated with increased markers of nephrotoxicity. Higher Ni 

concentrations have been found in the fingernails of welders (43) and other metal 

workers. (25) A recent study in rats found that exposure to Mn in welding fumes was 

correlated with manganese concentration in nails, as well as Mn accumulation in 

dopaminergic brain areas, (44) indicating that toenail metal concentration may reflect 

neurotoxicant deposition in the brain. Therefore it was reasonable to assume that Pb, Mn, 

Cd, Ni and As would similarly be present in toenails of the welders in this study, but also 

might be accumulating and affecting regions like the kidneys, lungs and brain.

Previously, Laohaudomchok et al. (24) explored the utility of toenails as a biomarker of Mn 

exposure in a group of boilermaker welders, with variable exposures. Boilermakers are 

welders trained to work on round vessels or pipes located within power plants. Such 

maintenance and repair work is largely seasonal, with most welding being performed during 

times of low energy need in the spring and fall months. Furthermore, union contracts can 

vary from one day to one year, adding additional variability to metal fume exposures. The 

high variability of occupational exposure for welders makes it an ideal population to explore 

the time window of exposure for biomarkers, since constant exposure is rare. In their study, 

Laohaudomchok et al. (24) used in-depth work history data to construct a cumulative 

exposure index over a work shift and over a year Mn (CEI-Mn). CEI-Mn was calculated 

using ambient air Mn concentration, type of welding performed, hours spent on each task, 

percentage of time working with respirator, and the protection factor associated with that 

respirator type. They found that after adjusting for age and dietary Mn, toenail Mn 

concentration was significantly associated with CEI-Mn for 7–9, 10–12 and 7–12 months 

prior to toenail clipping.

Recruiting from within the same base population of boilermakers, we sought to evaluate the 

association between total hours welded and toenail Mn concentrations over similar time 

periods as observed by Laohaudomchok et al. (24) Given a sample size of nearly 50 

individuals, a detailed CEI-Mn could not be calculated, and as is common in occupational 

studies, a simplified exposure metric was used. Building upon the findings of 

Laohaudomchok et al. (24), we wanted to explore whether in addition to Mn, other toenail 

metals (Cd, As, Pb and Ni) were also related to welding exposures in this population, and to 

what extent the toenail metal concentrations correlated with one another. Specifically, we 

wished to use welding hours to identify the relevant window of exposure that toenail 

concentrations reflect. Given that the toenail clippings are easy to acquire, transport, store 

and analyze they may serve as an ideal biomarker of intermediate term metal exposures.

METHODS

Study Population

Participants were recruited from members of a local boilermaker union located in Quincy, 

MA. Participants included journeymen and apprentice welders enrolled in a two year 

training program, as well as retired welders. Union members, including retirees, were 

invited to participate in the study through letters sent by union leadership informing 
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members of the study dates. In addition current and apprentice welders were recruited on 

site. Recruitment occurred between January of 2010 and June of 2011 over four study site 

visits, resulting in a total of 73 welders recruited. Only participants who provided complete 

work history data, demographic data (age, height, weight, race, smoking status) and had 

complete toenail metal concentrations for all five metals were included in this analysis, 

totaling 48 welders. Welders were allowed to participate during each of the site visits. 

Therefore, some participants contributed multiple samples: eleven subjects provided two 

toenail samples over the 2010–2011 study period, and five participants provided three 

samples.

Work history and questionnaire data

Union-maintained work histories preceding toenail collection by 12 months were used by 

participants to reconstruct specific job activities and exposures. Specifically, participants 

reviewed job descriptions from union records from the previous year, providing specifics on 

respirator use, welding tasks performed, job dates, total hours welded, metal used and 

location of work (indoor vs. outdoor, work site). Respirator use was reported as a percentage 

of time during which a full, half or filterless mask was used for each job. These data were 

used during analysis to construct month by month total hours welded and percentage of 

hours used with a respirator for each participant over the preceding 12 months. This study 

focused on weld hours as the primary exposure measure.

The 12 months prior to toenail collection were divided into quarters. Q1 represents the first 

three months prior to toenail collection, Q2 represents the fourth to six months preceding 

toenail collection, Q3 represents months seven through nine, and Q4 represents months 10–

12. Nail clippings are expected to represent exposure over the previous 6–12 months, (45) 

thus reflecting longer term exposures than urine or blood, although individual toenail growth 

rates may vary. Welding hours were tabulated in each quarter,

Study participants also completed self-administered lifestyle questionnaires that included 

height, weight, smoking status, medical history, and number of years as a welder or 

boilermaker.

Toenail metal collection and analysis

Study participants with adequate toenail growth clipped all 10 toenails at the study site, and 

placed them in a small envelope. Participants without adequate toenail growth were given 

pre-stamped addressed envelopes to be returned after the next toenail clipping, with the 

indicated clip date. Most of the toenail samples (68.1%) were collected on the same day as 

work history questionnaire completion. Subjects providing toenails from clippings 21 or 

more days after questionnaire information collection were excluded. Sensitivity analyses 

using main models were performed on only subjects with clipping lag times of one day or 

less to confirm that longer lag times did not bias results.

Toenail samples were analyzed for concentrations of lead (Pb), manganese (Mn), cadmium 

(Cd), nickel (Ni) and arsenic (As) at the Harvard School of Public Health Trace Metals 

Laboratory, using a dynamic reaction cell-inductively coupled plasma mass spectrometer 

(DRC-ICP-MS, Elan 6100, Perkin Elmer, Norwalk, CT). Quality control measures 
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performed in the laboratory include analysis of initial calibration verification standards 

(NIST SRM 1643d trace elements in water), continuous calibration standards, procedural 

blanks, duplicate samples, spiked samples, quality control standards, and certified reference 

material.

Toenail clippings from all ten toes were combined for each sample and analyzed as 

previously described (38). Briefly, prior to ICP-MS, external contaminants were removed by 

sonication using a 1% Triton X-100 solution (Sigma-Adrich, Inc. St. Louis, MO) for 20 

minutes. Toenails were then rinsed repeatedly in Milli-Q water (Millipore Corp., Billlerica, 

MA), dried, weighed and digested in nitric acid. Each subject sample underwent five 

replicate analyses. The net averaged concentration for each metal was calculated by 

subtracting detectable laboratory blank concentrations within each batch.

Statistical analysis

Toenail metal concentrations were not normally distributed so Spearman correlations were 

used in metal concentration comparisons, and geometric mean calculated to describe overall 

toenail concentration values. Nonparametric one way analysis of variance Kruskal-Wallis 

tests were used on the weld hour summary data to compare across time intervals. We used 

linear mixed models to estimate the associations between weld hours and toenail metal 

concentrations due to the presence of multiple toenail measurements for some participants. 

Toenail metal concentrations were skewed, so all toenail values used in models were log-

transformed. To determine whether there was a relationship between toenail metal 

concentration and hours welded, we separately modeled the logarithm of each toenail metal 

as a function of weld hours for each quarter, as well as across the entire year in a separate 

model that encompassed all work history data for that sample. All models were adjusted for 

BMI, age, respirator use and smoking status.

Percentage of hours welded while wearing a full or half-face respirator was combined into a 

single variable, while use of a dust mask was considered equivalent to unprotected welding. 

Percentage of time with a respirator was modeled as a continuous variable. A separate 

sensitivity analysis used a logit-transformed percentage of respirator weld hours variable. 

Participants with missing respirator data were assigned 0 for the respirator use variable in an 

additional analysis, thus assuming maximum exposure to weld fume.

RESULTS

The study sample included 47 men and one woman. The average age at first participation in 

the study was 39 years (standard deviation [SD] = 12.1). Additional participant 

characteristics are shown in Table I. On average, the participants had 11.2 (8.6) years of 

experience as a welder, and 8.6 (8.8) years as a boilermaker. This difference between these 

numbers may be due to the fact that some of the participants may have entered the welding 

apprentice program with prior welding experience. As expected, years as a boilermaker and 

years as a welder were highly correlated in this population (ρ = 0.60, p<0.0001). Twelve out 

of 69 (17.3%) toenail samples were missing respirator use data. Percentage of weld hours 

performed with a respirator was not associated with age, nor was percentage of respirator 

hours associated with number of hours welded across any of the time intervals.
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Work hours corresponding with each toenail sample and quarter were averaged across 

participants (Table II). Using non-parametric ANOVAs, we found that the distributions of 

logged hours worked across each quarter were not the same (p = 0.04). This is likely due to 

seasonal differences in work activity, as well as the timing of subject testing: work hours 

were least in the period 10–12 months prior to subject testing, which is carried out in the 

early summer and winter. This indicates that hours worked were less during November-

January, and April- June.

To determine whether long term exposure to metals correlated with shorter term exposure, 

we ran regression models that compared years as a welder or boilermaker to average hours 

worked over each of the four three-month intervals. There were no significant correlations 

between years as a boilermaker or welder and average hours worked across any of the 

quarters (data not shown). Overall, these results indicate that lifetime cumulative exposures 

are not related to hours welded in the past year, minimizing the possibility of confounding 

by years at work.

Toenail metal concentrations of lead (Pb), manganese (Mn), cadmium (Cd), nickel (Ni), and 

arsenic (As) were taken from each participants’ first study visit and used to calculate 

summary statistics (Table III). Cd was found at the lowest concentration, with 4.3% of 

samples falling below the limit of detection. Ni had the highest concentration in toenail 

samples. When toenail metal concentration values from multiple visits were included, the 

resulting geometric mean and other summary statistics remained similar (data not shown).

Correlating biological outcomes with specific metal exposure depends on the ability to 

distinguish the concentrations of one metal from another. Using Spearman correlations, we 

calculated the associations between each of the five metals (Table IV). We found that all the 

metals were significantly correlated with one another, with the exception of Ni and As 

which were not significantly associated with one another.

Using mixed effects models, we evaluated the association between weld hours and log 

transformed toenail metal concentrations after adjusting for age, respirator use, smoking 

status and BMI (Table V). Individual models were run for each metal and quarterly time 

period as well as yearly time period (sum of Q1-Q4). No associations were seen with any of 

the metals and the first two quarters (Q1-Q2, representing the most recent 0–6 months of 

exposure). This is to be expected; nail samples included in the clippings were mostly likely 

laid down much earlier than 0–6 months, given toenail growth rates.

Pb toenail concentration was associated with hours welded for the fourth quarter (10–12 

months prior to toenail collection) and across the entire year (Table V), although this may be 

due to the highly correlated relationship between Q1 and Q1-Q4 (rho = 0.495, p< 0.0001). 

Toenail Mn concentration was only associated with weld hours for the third quarter (months 

7–9). Cd concentration was significantly associated with weld hours during the fourth 

quarter, and summed weld hours across the entire year. Toenail Ni concentration was 

marginally associated with hours welded in the 4th quarter (p = 0.06). As was not 

significantly associated with weld hours over any time interval. Age and smoking were not 

significant in any of the models. The association between BMI and toenail As was 
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significant for Q2 (β = −0.0492, 95% CI = −0.0966, −0.00178, p = 0.0433), and approached 

significance for Q1 and Q4. In these models, percentage of respirator weld hours was 

associated with toenail metal concentration for Mn in the Q4 only (β = −0.1877, 95% CI: 

−0.34, −0.04, p = 0.02), but not for any other metal/time interval model combination.

We ran an additional analysis that used percentage of respirator weld hours as an interaction 

term with weld hours, in case the presence of a respirator changed the slope of the 

association between weld hours and toenail metal concentration. None of the interaction 

terms were significant and were therefore excluded from the final model. For the toenail 

samples that lacked respirator information, we ran a series of models that assigned 0% 

respirator use to overestimate weld fume exposure and thus bias results toward the null, and 

saw no substantive changes in results (data not shown).

When subjects with greater than a 24 hour lag time between providing the work history 

questionnaire data and toenail sample collection were excluded, Pb was no longer associated 

with Q4, with all other results essentially unchanged (data not shown). Models were also run 

that additionally adjusted for total years as a welder. The years as a welder term was not 

statistically significant in all models, with negligible changes to the model parameters for 

weld hours and other covariates and was therefore excluded from the final model.

DISCUSSION AND CONCLUSIONS

Among a population of construction workers occupational exposed to welding fume, we 

observed detectable levels of lead (Pb), manganese (Mn), cadmium (Cd), nickel (Ni) and 

arsenic (As) in toenail clippings. All toenail metal concentrations were significantly 

correlated with one another, with the exception of Ni and As. After adjusting for age, 

respirator use, smoking status and BMI, we found that weld hours 7–9 months prior to 

toenail clipping was a statistically significant predictor of toenail Mn concentration. Weld 

hours 10–12 months prior to toenail clipping as well as summed over the previous year were 

statistically significant predictors of toenail Pb and Cd concentrations. No associations were 

observed between toenail Ni or As concentrations and welding hours. Furthermore, long 

term exposure, expressed as total yeas as a welder was not associated with toenail metal 

concentrations.

Median Mn levels in toenails reported here are similar to those seen in an earlier study with 

the same population (median of 0.80µg/g), (24) yet lower than toenail Mn measured in 

Portuguese miners (mean [SD]: 2.51[0.70] µg/g). (26) Higher toenail metal concentrations 

were reported in a study from an industrialized area with high levels of environmental 

exposures from air pollution and dust. (35) However, those results may have been skewed by 

a small number of extremely high exposures, and were calculated using adults and children, 

where children tend to have higher toenail metal concentrations than adults. (31, 33) A non-

occupational study of elderly men in the Boston area measured toenail metal concentrations 

much lower than the welders from current study (in participants under the age of 72: (mean 

(SD) As: 0.08 (0.06); Cd: 0.01 (0.02); Mn: 0.3 (0.41); Pb: 0.28 (0.47)). (37) While some of 

these differences are due to age and other factors, the relative geographic similarity of that 

population with ours suggests there would be similar background level of environmental 

Grashow et al. Page 7

J Occup Environ Hyg. Author manuscript; available in PMC 2015 June 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



exposure to these metals, indicating that some portion of the discrepancy is due to 

occupational exposure to welding fumes.

Information on the relative levels of metal fume exposure among this population can be 

gleaned from a study of welders taken from the same base population. Among a cohort 

using similar welding techniques, personal PM2.5 exposure to welding fume was 

predominately comprised of iron, followed by Mn, Al, Zn, Cr, Pb and Ni (Cd was not 

identified (46)). If the metabolism and distribution throughout the body were equal for each 

metal, we would expect the relative concentration of toenail metals to follow the relative air 

metal concentrations. However, results indicate toenails were highest in Ni, followed by Mn, 

Pb, As, and Cd. The dominance of Mn in air (46) and Ni in toenails within the current study 

is of interest.

We cannot rule out the possibility that this difference was seen because the welders in the 

current population were predominantly exposed to Ni, not Mn. However, it is unlikely that 

the metal exposure profile of the welders in the current study varies greatly from the 

Cavallari study from 2008, given that no large scale changes have occurred in welding 

techniques, job locations or source materials. More likely, the deposition of metal in toenail 

in our study participants, as in other toenail studies, is a complex interaction between weld 

fume exposure, rate of nail growth, age(47), kinetic models for peripheral tissues (16) and 

how the body regulates and excretes essential nutrient metals like Mn(44) or selenium,(48) 

and non-essential metals like As. The availability of metal ions to bind with sulfhydryl nails 

will in part depend on the metal concentration in the blood, so blood half-lives of different 

metals may also factor into toenail metal concentrations. For example, the half-life of Pb in 

blood is 30–36 days, (49) which is much longer than arsenic, with a half-life of 10–24 

hours. (50) In addition, the ionic structure of each metal may impact absorption; studies have 

shown that Pb may be substituted for calcium in the body, (51, 52) and be more likely to be 

incorporated into tissue. Uptake of different metals may be further enhanced by nutritional 

deficiencies, (53, 54) or by individual genotypes. (55, 56)

We saw high correlations between toenail metals measured during each participant’s first 

participation date. The highest correlation was between Mn and Cd (ρ = 0.60, p <0.001). 

Significant correlations were found between all metals, with the exception of Ni and As, and 

with the Cd-Ni relationship being just slightly over the significance threshold. In personal 

PM2.5 air exposure measured within a similar population of welders performing training at 

an apprentice welding school, (46) the correlation between Pb and Mn was 0.63, whereas 

toenail correlation for these metals was 0.31. Similarly, the relationship between toenail Pb 

and Ni was 0.34, whereas air exposure showed a correlation of 0.49. These changes in 

correlations between the air and internal dose are likely due in part to the different 

accumulation patterns of these metals, as previously discussed. Notably, the correlation 

between personal exposures to air metal concentrations in other environments among these 

participants, such as power plants where these welders primarily work, is unknown.

To date, only one occupational study among carpenters found similar correlations between 

toenail Pb and Cd and Ni. (23) In the study of Boston-area elderly men previously cited, most 

correlations between metals were similar with the exception of Mn-Pb and Mn-As which 
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showed higher correlations in our study. (37) Correlational similarities may be due to the way 

that these metals are co-regulated in the body regardless of absolute concentration values, 

and reflect similar geographical environmental exposures. It is unclear whether higher 

welder correlations are due only to occupational exposure to welding fume, and in general 

the extent to which correlations seen in one occupational setting will be comparable to 

another occupational study or to an environmental exposure. Regardless of the study type 

however, such correlations imply that it may be difficult to disentangle one exposure from 

another, making it difficult to assign health outcomes to specific metals.

In models of toenail metal concentration and hours welded with adjustments for age, BMI, 

respirator use and smoking status, Mn and Pb showed the most robust associations. 

Specifically, Pb was significantly associated with hours welded in Q4 and the full year 

summary, Q1-Q4. However the high correlation between Q1 and Q1-Q4 for Pb, makes it 

difficult to disentangle the true relationship. Hours welded over Q3 were significantly 

associated with Cd toenail concentration. Total years as a welder was not significantly 

associated with toenail concentration for any metal or time period, indicating that toenail 

metals in this group better reflected exposures occurring over the previous year, as opposed 

to cumulative exposures over many years.

Mn was associated with hours welded over a three month period with a lag of 7–9 months 

prior to clipping, which replicates previous findings in this group. (24) Laohaudomchok et al. 

used a detailed algorithm that included respirator type and use, welding task performed, and 

air Mn concentration in models that adjusted for dietary Mn intake. Therefore, it is of note 

that the association between toenail Mn and the exposure measure persisted despite using 

weld hours, a simplified measure of exposure. Using this simplified exposure metric allowed 

us to expand the sample size of the population. Furthermore, assumptions about exposure 

levels specific to different welding techniques and situations were not used. Despite 

potential exposure misclassification by using a simplified exposure metric, we were still able 

to observe significant exposure-response associations. Furthermore, our techniques 

remained sensitive to identifying associations with quarterly exposures across the yearly 

exposure window.

No associations were seen with any of the metals analyzed and the more recent work history 

windows, Q1 and Q2. This was to be expected, given that rates of toenail growth indicate 

that exposures occurring 0–6 months prior to clipping would be closer to the nail bed, and 

thus not incorporated into the clipping. However, we feel that these results serve as an 

important control. If the relationships between toenail metal concentrations and weld hours 

were spurious, we would have seen associations in these incongruent time windows (Q1 

and/or Q2). Likewise, if within this population metal exposures were constant or invariant 

from occupational or environmental sources (e.g. water, smoking, etc.), the body metal 

burden would reach a steady state and associations of similar magnitudes would have been 

observed across all time windows (Q1-Q4).

There are a number of limitations associated with using toenail metal concentration as a 

biomarker of weld fume exposure. Toenail growth rate is variable across individuals, and 

studies have identified average growth rates to be between 1.5–1.6 mm/month. (17, 57) These 
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values suggest that toenail concentrations should reflect exposures 8–10 months prior to the 

clip date based on average toenail growth rates and lengths. (18) A recent study found 

slightly faster growth rates of 2.43 mm/month in the largest toenail in men approximately 

the same average age as the population described, (17) indicating that toenail clipping reflect 

exposures more recent than 8–12 months. However, any variation in toenail growth or 

clipping length would not be correlated with hours welded and therefore would not affect 

the internal validity of the study results. It is also important to note that each of the metals 

included in this study has different accumulation patterns in the body which occurs over 

different timescales. For example, Cd tends to accumulate in the kidney cortex and bone (58) 

while Pb will remain in blood by binding to erythrocytes, and also accumulate in bone and 

teeth preferentially. (34) Therefore, in comparing concentrations between metals, lower 

toenail concentrations of a certain metal may not necessarily mean lower occupational or 

environmental exposure, but rather could be a reflection of differences in distribution within 

the body.

Additionally, non-differential exposure misclassification of the crude exposure measure 

welding hours may have limited the ability to detect associations with the metals that 

showed no relationship between weld hours and toenail metal concentration and may have 

biased significant effect estimates towards the null. Furthermore, we didn’t account for 

dietary sources of Mn and other metals, but these sources are unlikely to be correlated with 

working patterns and workplace exposure histories. In a previous toenail study on the same 

population, estimated dietary Mn intake was not correlated with toenail, blood, or urine Mn 

levels. (24) Since dietary sources of exposure are unlikely to be linked to welding hours, any 

exposure misclassification due to dietary sources would be non-differential, would bias 

estimates to the null and would not explain the associations we observed. Welders may also 

be exposed when on the job site but not actively welding. Likewise, we did not account for 

type of welding performed or location of work site (indoor vs. outdoor). Both would lead to 

exposure misclassification. Finally, weld type- a variable not considered here- could account 

for relatively low levels of Ni and Cd if stainless steel welding was less common than mild 

steel welding and soldering, which produce relatively higher levels of Mn and Pb.

The validation of a biomarker is an iterative process including evaluation of the relationship 

between exposure, biomarker concentrations, and health outcomes. (45) The current study 

sheds light on the relevant exposure time-period for toenail metals. Using weld hours as a 

surrogate measure for metal exposure, we were able to assess associations between specific 

time periods of exposure to weld fume and toenail metal concentrations. Our ability to detect 

association is in large part due to the variability of exposure within the population. Rather 

than reaching a steady state, exposure varied within and across months for each individual. 

Future studies in other metal exposed populations should continue to explore the relevant 

exposure windows for toenail metal concentrations as well as intra- and inter-individual 

variability. Overall, the data presented here support the hypothesis that toenail metal 

concentrations capture internal exposure over specific time intervals and reflect longer-term 

exposure. Toenail samples are painless during collection, and are easy to store and transport 

and therefore have great potential for use in occupational and environmental risk assessment 

and exposure studies.
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TABLE I

Participant (n = 48) demographics and characteristics.

Characteristic Mean SD

Age at first participation 39.0 12.1

Body Mass Index (BMI) 27.9 4.7

Years as a boilermaker 8.6 8.8

Years as a welder 11.2 8.6

Respirator use over full year (%) 40.2 31.2

n %

White 39 81

Current smokers 18 38

  Male 47 98
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TABLE II

Hours worked prior to toenail clipping. Data include multiple samples for some participants (n=69 

observations, n= 48 participants).

Time period Median GM GSD IQR

1–3 months (Q1) 90.0 91.0 3.1 172.0

3–6 months (Q2) 38.0 57.8 4.0 142.0

6–9 months (Q3) 38.4 67.1 4.4 110.8

9–12 months (Q4) 3.6 40.0 5.3 60.0

1–12 months 279.3 256.1 2.7 424.4

GM, geometric mean; GSD, geometric standard deviation; IQR, interquartile range
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TABLE IV

Spearman correlations (ρ) and statistical significance (p) between toenail metals at first participation (n = 48)

Metal Mn Cd Ni As

Pb ρ = 0.32
p = 0.03

ρ = 0.51
p < 0.001

ρ = 0.34
p = 0.02

ρ = 0.49
p < 0.001

Mn ρ = 0.60
p <0.001

ρ = 0.31
p = 0.03

ρ = 0.37
p = 0.01

Cd ρ = 0.28
p = 0.05

ρ = 0.37
p = 0.01

Ni ρ = 0.20
p = 0.17
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